Kamis, 28 April 2011

BIOKIMIA

Gula darah

Gula darah
gula darah adalah istilah yang mengacu kepada tingkat glukosa di dalam darah. Konsentrasi gula darah, atau tingkat glukosa serum, diatur dengan ketat di dalam tubuh. Glukosa yang dialirkan melalui darah adalah sumber utama energi untuk sel-sel tubuh. Umumnya tingkat gula darah bertahan pada batas-batas yang sempit sepanjang hari: 4-8 mmol/l (70-150 mg/dl). Tingkat ini meningkat setelah makan dan biasanya berada pada level terendah pada pagi hari, sebelum orang makan. Diabetes mellitus adalah penyakit yang paling menonjol yang disebabkan oleh gagalnya pengaturan gula darah. Meskipun disebut “gula darah”, selain glukosa, kita juga menemukan jenis-jenis gula lainnya, seperti fruktosa dan galaktosa. Namun demikian, hanya tingkatan glukosa yang diatur melalui insulin dan leptin.
Pengaruh langsung dari masalah gula darah Bila level gula darah menurun terlalu rendah, berkembanglah kondisi yang bisa fatal yang disebut hipoglikemia. Gejala-gejalanya adalah perasaan lelah, fungsi mental yang menurun, rasa mudah tersinggung, dan kehilangan kesadaran. Bila levelnya tetap tinggi, yang disebut hiperglikemia, nafsu makan akan tertekan untuk waktu yang singkat. Hiperglikemia dalam jangka panjang dapat menyebabkan masalah-masalah kesehatan yang berkepanjangan pula yang berkaitan dengan diabetes, termasuk kerusakan pada mata, ginjal, dan saraf. [sunting] Mekanisme pengaturan gula darah Tingkat gula darah diatur melalui umpan balik negatif untuk mempertahankan keseimbangan di dalam tubuh. Level glukosa di dalam darah dimonitor oleh pankreas. Bila konsentrasi glukosa menurun, karena dikonsumsi untuk memenuhi kebutuhan energi tubuh, pankreas melepaskan glukagon, hormon yang menargetkan sel-sel di lever (hati). Kemudian sel-sel ini mengubah glikogen menjadi glukosa (proses ini disebut glikogenolisis). Glukosa dilepaskan ke dalam aliran darah, hingga meningkatkan level gula darah. Apabila level gula darah meningkat, entah karena perubahan glikogen, atau karena pencernaan makanan, hormon yang lain dilepaskan dari butir-butir sel yang terdapat di dalam pankreas. Hormon ini, yang disebut insulin, menyebabkan hati mengubah lebih banyak glukosa menjadi glikogen. Proses ini disebut glikogenosis), yang mengurangi level gula darah. Diabetes mellitus tipe 1 disebabkan oleh tidak cukup atau tidak dihasilkannya insulin, sementara tipe 2 disebabkan oleh respon yang tidak memadai terhadap insulin yang dilepaskan (“resistensi insulin”). Kedua jenis diabetes ini mengakibatkan terlalu banyaknya glukosa yang terdapat di dalam darah. [sunting] Gula darah rendah Sebagian orang merasa mengantuk atau fungsi kognitifnya menurun beberapa jam setelah makan, yang mereka yakini berkaitan dengan menurunnya tingkat gula darah, atau “gula darah rendah
Sumber : http://id.wikipedia.org/wiki/Gula_darah
Gula reduksi ialah gula yang mempunyai gugus aldehida atau keton bebas yang dalam suasana basa dapat mereduksi logam-logam, sedangkan gula itu sendiri teroksidasi menjadi asam-asam (asam aldonat, asam ketonat atau asam uronat). Gula reduksi dalam nira, sirup atau tetes tebu terutama terdiri dari glukosa dan fruktosa dengan perbandingan sekitar 1 : 1. Metode yang digunakan untuk menentukan kadar gula reduksi dalam nira, sirup dan tetes tebu ialah metode Lane & Eynon. Gula reduksi dapat mereduksi larutan Fehling menjadi tembaga oksida yang mengendap berwarna merah bata (ion kupri tereduksi menjadi ion kupro). Larutan Fehling A mengandung ion kurpi (CuSO4), sedangkan larutan Fehling B mengandung campuran alkali (NaOH dan KNaC4H4O6). Gula reduksi dengan alkali (Fehling B) akan membentuk enediol, kemudian enediol ini dengan ion kupri (Fehling A) akan membentuk ion kupro dan campuran asam-aam. Selanjutnya ion kupro dalam suasana basa akan membentuk kurpo hidroksida yang dalam keadaan panas mendidih akan mengendap menjadi endapan kupro oksida (Cu2O) yang berwarna merah bata.
Sumber : http://www.risvank.com/?p=189

Metabolisme

2.1 Pengertian Metabolisme
Metabolisme adalah proses-proses kimia yang terjadi di dalam tubuh makhluk hidup/sel. Metabolisme disebut juga reaksi enzimatis, karena metabolisme terjadi selalu menggunakan katalisator enzim.
Berdasarkan prosesnya metabolisme dibagi menjadi 2, yaitu:
2.1.1. Anabolisme/Asimilasi/Sintesis,
Anabolisme yaitu proses pembentakan molekul yang kompleks dengan menggunakan energi tinggi.
Contoh : fotosintesis (asimilasi C)
6 CO2 + 6 H2O ———————————> C6H1206 + 6 02
Pada kloroplas terjadi transformasi energi, yaitu dari energi cahaya sebagai energi kinetik berubah menjadi energi kimia sebagai energi potensial, berupa ikatan senyawa organik pada glukosa. Dengan bantuan enzim-enzim, proses tersebut berlangsung cepat dan efisien. Bila dalam suatu reaksi memerlukan energi dalam bentuk panas reaksinya disebut reaksi endergonik. Reaksi semacam itu disebut reaksi endoterm.
Jalur anabolisme yang membentuk senyawa-senyawa dari prekursor sederhana mencakup:
  1. Glikogenesis, pembentukan glikogen dari glukosa.
  2. Glukoneogenesis, pembentukan glukosa dari senyawa organik lain.
  3. Jalur sintesis porfirin
  4. Jalur HMG-CoA reduktase, mengawali pembentukan kolesterol dan isoprenoid.
  5. Metabolisme sekunder, jalur-jalur metabolisme yang tidak esensial bagi pertumbuhan, perkembangan, maupun reproduksi, namun biasanya berfungsi secara ekologis, misalnya pembentukan alkaloid dan terpenoid.
  6. Fotosintesis
  7. Siklus Calvin dan fiksasi karbon

2.1.2 Katabolisme (Dissimilasi),
Katabolisme yaitu proses penguraian zat untuk membebaskan energi kimia yang tersimpan dalam senyawa organik tersebut.
Contoh:
C6H12O6 + 6 O2 ———————————> 6 CO2 + 6 H2O + 686 KKal.
Saat molekul terurai menjadi molekul yang lebih kecil terjadi pelepasan energi sehingga terbentuk energi panas. Bila pada suatu reaksi dilepaskan energi, reaksinya disebut reaksi eksergonik. Reaksi semacam itu disebut juga reaksi eksoterm.

Molekul Yang Terlibat Dalam Metabolisme
Dalam metabolisme terdapat beberapa molekul yang terlibat, yaitu:
A. Enzim
Enzim merupakan biokatalisator / katalisator organik yang dihasilkan oleh sel. Struktur enzim terdiri dari:
  1. Apoenzim, yaitu bagian enzim yang tersusun dari protein, yang akan rusak bila suhu terlampau panas(termolabil).
  1. 2. Gugus Prostetik (Kofaktor), yaitu bagian enzim yang tidak tersusun dari protein, tetapi dari ion-ion logam atau molekul-molekul organik  yang disebut KOENZIM. Molekul gugus prostetik lebih kecil dan tahan panas (termostabil), ion-ion logam yang menjadi kofaktor berperan sebagai stabilisator agarenzim tetap aktif. Koenzim yang terkenal pada rantai pengangkutan elektron (respirasi sel), yaitu NAD (Nikotinamid Adenin Dinukleotida), FAD (Flavin Adenin Dinukleotida), SITOKROM.
Enzim mengatur kecepatan dan kekhususan ribuan reaksi kimia yang berlangsung di dalam sel. Walaupun enzim dibuat di dalam sel, tetapi untuk bertindak sebagai katalis tidak harus berada di dalam sel. Reaksi yang dikendalikan oleh enzim antara lain ialah respirasi, pertumbuhan dan perkembangan, kontraksi otot, fotosintesis, fiksasi, nitrogen, dan pencernaan.
Enzim mempunyai sifat-siat sebagai berikut:
  1. Biokatalisator, mempercepat jalannya reaksi tanpa ikut bereaksi.
  2. Thermolabil; mudah rusak, bila dipanasi lebih dari suhu 60º C, karena enzim tersusun dari protein yang mempunyai sifat thermolabil.
  3. Merupakan senyawa protein sehingga sifat protein tetap melekat pada enzim.
  4. Dibutuhkan dalam jumlah sedikit, sebagai biokatalisator, reaksinya sangat cepat dan dapat digunakan berulang-ulang.
  5. Bekerjanya ada yang di dalam sel (endoenzim) dan di luar sel (ektoenzim), contoh ektoenzim: amilase,maltase.
  6. Umumnya enzim bekerja mengkatalisis reaksi satu arah, meskipun ada juga yang mengkatalisis reaksi dua arah, contoh : lipase, mengkatalisis pembentukan dan penguraian lemak.
    lipase
    Lemak + H2O ———————————> Asam lemak + Gliserol
  1. Bekerjanya spesifik ; enzim bersifat spesifik, karena bagian yang aktif  (permukaan tempat melekatnya substrat) hanya setangkup dengan permukaan substrat tertentu.
  2. Umumnya enzim tak dapat bekerja tanpa adanya suatu zat non protein tambahan yang disebut kofaktor.

Gbr. Penghambatan Reversible terhadap kerja enzim
Pada reaksis enzimatis terdapat zat yang mempengarahi reaksi, yakni aktivator dan inhibitor, aktivator dapat mempercepat jalannya reaksi,
contoh aktivator enzim: ion Mg2+, Ca2+, zat organik seperti koenzim-A.
Inhibitor akan menghambat jalannya reaksi enzim. Contoh inhibitor : CO, Arsen, Hg, Sianida.
B. ATP (Adenosin Tri Phosphat)
Molekul ATP adalah molekul berenergi tinggi. Merupakan ikatan tiga molekulfosfat dengan senyawa Adenosin. Ikatan kimianya labil, mudah melepaskan gugus fosfatnya meskipun digolongkan sebagai molekul berenergi tinggi.
Perubahan ATP menjadi ADP (Adenosin Tri Phosphat) diikuti dengan pembebasan energi sebanyak 7,3 kalori/mol ATP. Peristiwa perubahan ATP menjadi ADP merupakan reaksi yang dapat balik.

Katabolisme gula
Organisme tetap bertahan dalam hidupnya berkat energi yang mereka peroleh dari lingkugannya. Tumbuhan dan organisme yang mampu berfoto sintesis memperoleh energi dari sinar matahari. Hewan memperoleh dari rantai makanan. Meski berasal dari beragam sumber, energi tersebut harus tersedia dalam bentuk yang dapat digunakan untuk mengendalikan berbagai macam reaksi. Energi dirubah dalam bentuk energi ikatan kimia , yaitu ATP (adenine triphospat). ATP sangat reaktif karena ikatan diantara tiga kelompok fosfat relative tidak stabil. Ikatan-ikatan tersebut menunjukkan energi ikatan fosfat. Produk hidrolisis berupa ADP (adenine difosfat) dan fosfat organic yang disimbolkan dengan P1. Persamaan reaksinya sebagai berikut:
ATP + H2O —-> ADP +P1 + Energi
Dalam beberapa kasus, kedua ikatan fosfat berenergi tinggi dapat terurai, melepaskan unsure P untuk kedua kalinya dan menghasilkan AMP (adenosine monofosfat).
Tumbuhan membuat ATP selama fotosintesis dan menggunakan ATP tersebut untuk mensintesis glukosa dan karbohindrat lainnya. Tetapii tumbuhan dan organisme yang memproduksi ATP melalui pemecahan gula (karbohidrat), lemak dan protein.
Pada awal bahan kajian ini telah dijelaskan behwa proses metabolisme yang membebaskan energi melalui pemecahan molekul-molekul kompleks disebut katabolisme. Proses katabolisme yang berlangsung dalam sel disebut respirasi sel. Ada dua macam respirasi sel, yaitu respirasi aerobic dan anaerobic.
Respirasi anerobik adalah proses degradasi molekul organic untuk menghasilkan ATP tanpa bantuan Oksigen (O2). Banyak organisme prokariot dan protista tetap bertahan hidup tanpa O2, Mereka membuat ATP dengan menggunakan reaksi anaerobic, yaitu fermentasi (transport electron anerobik). Sebagian dari sel kita juga menggunakan jalur anaerobic untuk periode pendek tertentu pada saat sel-sel tersebut tidak memperoleh suplai O2 yang cukuup. Kebalikan dari respirasi anaerobic yaitu respirasi aerobic yaitu jalur pembentukan ATP yang bergantung pada O2. Setiap udara yang kita hirup menyediakan suplai O2 yang segar bagi aktifitas sel-sel respirasi. Oksigen dikonsumsi sebagai sebuah reaktan di sepanjang jalur pembakaran organic.
Pemecahan glukosa pada sel berlangsung dalam beberapa tahapan. Baik respirasi aerobic maupun anaerobic, keduanya dimulai dengan tahap glikolisis yang meruubah glukosa menjadi dua molekul piruvat, yaitu senyawa organic yang mempunyai tiga atom karbon (C3). Setelah glikolisis jalur pembebasan energi berbeda. Jalur aerobic di teruskan ke mitokondria dan O2 berperan sebagai penerima (akseptor) terakhir electron selama reaksi berlangsung. Jalur anaerobic dimulai dan diakhiri di sitoplasma, penerima electron terakhir adalah bahan selain O2. Setiap tahapan reaksi dalam respirasi sel dikatalis oleh enzim. Bentuk atau senyawa intermediat (senyawa antara) pada tahap berfugsi sebagai substrat enzim lanjutan di jalur tersebut.

A. Respirasi aerobic
Glukosa merupakan bahan baker utama respirasi. Respirasi aerobic memperoleh banyak sekali molekul ATP dari setiap molekul glukosa. Bila jalur anaerobic hanya menghasilkan 2 molekul ATP, jalur anaerobic umumnya menghasilkan 36 ATP atau lebih. Oleh karena itu organisme yang melakukan respirasi aerobic biasanya lebih komplek daripada yang melakukan respirasi anerobik. Seluruh pembakaran glukosa pada respirasi Aerobik dapat dirangkum menjadi persamaan berikut
C6H12O6 + 6O2 ——> 6CO2 + 6H2O + energi
Produk buangan (samping) respirasi, yaitu CO2 dan H2O adalah zat—zat yang digunakan kloroplas sebagai bahan mentah untuk fotosintesis dan diolah kembali menjadi glukosa. Oksigen hasil fotosintesis dikembalikan lagi ke udara. Unsur-unsur kimia tersebut sangat penting dalam daur kehidupan.
Dalam reaksi kimia, terjadi transfer satu atau lebih electron dari satu reaktan ke reaktan lainnya. Transfer atau transport electron tersebut dinamakan reaksi reduksi oksidasi atau reaksi redoks. Selama berlangsung reaksi redoks, hilangnya electron dari suatu zat dikatakan oksidasi dan penambahan dikatakan reduksi. Reaksi Redoks dapat ditulis dengan rumus sebagai berikut:
Xe- + Y ——> X + Ye-
Dalam hipotesis reaksi zat X merupakan donor electron dan disebut agen reduksi karena mereduksi Y. Zat Y adalah akseptor electron dan disebut agen oksidasi karena mengoksidasi X. Reaksi sel termasuk suatu proses redoks
C6H12O6 + 6 O2 à 6 CO2 + 6 H2O
Dalam proses tersebut elektron-elektron yang bergabung dengan karbon dan hydrogen diubah menjadi atom-atom oksigen elektronegatif. Gula dioksidasi dan Oksigen direduksi serta elektro-elektron kehilangan energi potensialnya. Energi diberikan oleh elektron-elektron yang ada, kemudian digunakan sel untuk mengendalikan sintesis ATP.
Umumnya molekul-molekul organik kaya akan hydrogen merupakan bahan bakar utama karena hydrogen mengandung elektron berenergi tinggi.  Tanfers atom-atom hidrogen   dari bahan bakar organik ke oksigen melepaskan elektron-elektron ke tingkat energi paling rendah. Jadi, respirasi sel aerobik adalah suatu proses redoks
1. Glikolisis
Glikolisis merupakan proses pengubahan molekul sumber energi, yaitu glukosa yang mempunyai 6 atom C manjadi senyawa yang lebih sederhana, yaitu asam piruvat yang mempunyai 3 atom C. Reaksi ini berlangsung di dalam sitosol (sitoplasma). Reaksi glikolisis mempunyai sembilan tahapan reaksi yang dikatalisis oleh enzim tertentu, tetapi disini tidak akan dibahas enzim-enzim yang berperan dalam proses glikolisis ini. Dari sembilan tahapan reaksi tersebut dapat dikelompokkan menjadi dua fase, yaitu fase investasi energi, yaitu dari tahap 1 sampai tahap 4, dan fase pembelanjaan energi, yaitu dari tahap 5 sampai tahap 9.
Pertama-tama, glukosa mendapat tambahan satu gugus fosfat dari satu molekul ATP, yang kemudian berubah menjadi ADP, membentuk glukosa 6-fosfat. Setelah itu, glukosa 6-fosfat diubah oleh enzim menjadi isomernya, yaitu fruktosa 6-fosfat. Satu molekul ATP yang lain memberikan satu gugus fosfatnya kepada fruktosa 6-fosfat, yang membuat ATP tersebut menjadi ADP dan fruktosa 6-fosfat menjadi fruktosa 1,6-difosfat. Kemudian, fruktosa 1,6-difosfat dipecah menjadi dua senyawa yang saling isomer satu sama lain, yaitu dihidroksi aseton fosfat dan PGAL (fosfogliseraldehid atau gliseraldehid 3-fosfat). Tahapan-tahapan reaksi diatas itulah yang disebut dengan fase investasi energi.
Selanjutnya, dihidroksi aseton fosfat dan PGAL masing-masing mengalami oksidasi dan mereduksi NAD+, sehingga terbentuk NADH, dan mengalami penambahan molekul fosfat anorganik (Pi) sehingga terbentuk 1,3-difosfogliserat. Kemudian masing-masing 1,3-difosfogliserat melepaskan satu gugus fosfatnya dan berubah menjadi 3-fosfogliserat, dimana gugus fosfat yang dilepas oleh masing-masing 1,3-difosfogliserat dipindahkan ke dua molekul ADP dan membentuk dua molekul ATP. Setelah itu, 3-fosfogliserat mengalami isomerisasi menjadi 2-fosfogliserat. Setelah menjadi 2-fosfogliserat, sebuah molekul air dari masing-masing 2-fosfogliserat dipisahkan, menghasilkan fosfoenolpiruvat. Terakhir, masing-masing fosfoenolpiruvat melepaskan gugus fosfat terakhirnya, yang kemudian diterima oleh dua molekul ADP untuk membentuk ATP, dan berubah menjadi asam piruvat.
Setiap pemecahan 1 molekul glukosa pada reaksi glikolisis akan menghasilkan produk kotor berupa 2 molekul asam piruvat, 2 molekul NADH, 4 molekul ATP, dan 2 molekul air. Akan tetapi, pada awal reaksi ini telah digunakan 2 molekul ATP, sehingga hasil bersih reaksi ini adalah 2 molekul asam piruvat (C3H4O3), 2 molekul NADH, 2 molekul ATP, dan 2 molekul air. Perlu dicatat, pencantuman air sebagai hasil glikolisis bersifat opsional, karena ada sumber lain yang tidak mencantumkan air sebagai hasil glikolisis.

2. Dekarboksilasi Oksidatif
Setelah melalui reaksi glikolisis, jika terdapat molekul oksigen yang cukup maka asam piruvat akan menjalani tahapan reaksi selanjutnya, yaitu siklus Krebs yang bertempat di matriks mitokondria. Jika tidak terdapat molekul oksigen yang cukup maka asam piruvat akan menjalani reaksi fermentasi. Akan tetapi, asam piruvat yang mandapat molekul oksigen yang cukup dan akan meneruskan tahapan reaksi tidak dapat begitu saja masuk ke dalam siklus Krebs, karena asam piruvat memiliki atom C terlalu banyak, yaitu 3 buah. Persyaratan molekul yang dapat menjalani siklus Krebs adalah molekul tersebut harus mempunyai dua atom C (2 C). Karena itu, asam piruvat akan menjalani reaksi dekarboksilasi oksidatif.
Dekarboksilasi oksidatif adalah reaksi yang mengubah asam piruvat yang beratom 3 C menjadi senyawa baru yang beratom C dua buah, yaitu asetil koenzim-A (asetil ko-A). Reaksi dekarboksilasi oksidatif ini (disingkat DO) sering juga disebut sebagai tahap persiapan untuk masuk ke siklus Krebs. Reaksi DO ini mengambil tempat di intermembran mitokondria.
Pertama-tama, molekul asam cuka yang dihasilkan reaksi glikolisis akan melepaskan satu gugus karboksilnya yang sudah teroksidasi sempurna dan mengandung sedikit energi, yaitu dalam bentuk molekul CO2. Setelah itu, 2 atom karbon yang tersisa dari piruvat akan dioksidasi menjadi asetat (bentuk ionisasi asam asetat). Selanjutnya, asetat akan mendapat transfer elektron dari NAD+ yang tereduksi menjadi NADH. Kemudian, koenzim A (suatu senyawa yang mengandung sulfur yang berasal dari vitamin B) diikat oleh asetat dengan ikatan yang tidak stabil dan membentuk gugus asetil yang sangat reaktif, yaitu asetil koenzim-A, yang siap memberikan asetatnya ke dalam siklus Krebs untuk proses oksidasi lebih lanjut.
Selama reaksi transisi ini, satu molekul glukosa yang telah menjadi 2 molekul asam piruvat lewat reaksi glikolisis menghasilkan 2 molekul NADH.

daur Kreb
Daur kreb adalah reaksi dalam respirasi yaitu penggunaan asetil KoA menjadi CO2 (CO2 pertama kali dihasilkan). Daur Kreb / siklus krebs ini terjadi 2 kali => utk membentuk 1 mol glukosa. Daur kreb terjadi di ruang mitokondria (matrik). Prosesnya adalah
Asetil KoA direaksikan dgn asam oksaloasetat, kemudian masuk ke dalam siklus berulang-ulang.
Lebih detilnya……
1) Asam oksaloasetat + Asetil KoA —> Asam Sitrat + KoA
2) Asam sitrat + NAD —> Asam ketoglutarat + NADH2 + CO2
3) Asam ketoglutarat + NAD + H2O —> Asam suksinat + NADH2 + CO2
4) Asam suksinat + FAD + H2O —> Fumarat + FADH2
5) Fumarat + H2O —> Malat
6) Malat + NAD —> Asam oksaloasetat +NADH2
Asam oksaloasetat = senyawa siklus (senyawa yg mengawali reaksi dan terbentuk kembali di akhir reaksi).
Kesimpulan:
Bahan —————————-> Produk
2 Asetil KoA ——————–> 2 KoA
6 H2O —————————–> 4 CO2
6 NAD —————————-> 6 NADH2
2 FAD —————————-> 2 FADH2
2 ADP —————————–> 2 ATP
Rantai Transpor Elektron
Pada sistem transpor elektron, berlangsung pengepakan energi dari glukosa menjadi ATP. Reaksi ini terjadi di dalam membrane dalam mitokondria. Hidrogen dari siklus Krebs yang tergabung dalam FADH2 dan NADH diubah menjadi elektron dan proton. Sebagai pembawa elektron adalah sejenis protein dan gugus yang dapat berkaitan dengan protein. Golongan ini mencakup NAD, FAD, ubikuinon, dan protein sitokrom. Pada sistem transpor elektron ini, oksigen adalah akseptor elektron terakhir. Setelah menerima elektron, O2 akan bereaksi dengan H+ membentuk H2O

Respirasi Anaerobik

Respirasi anaerobik adalah proses degradasi molekul organik untuk menghasilkan ATP tanpa bantuan oksigen.Banyak organisme prokariot dan protista tetap bertahan hidup tanpa oksigen.Mereka membuat ATP dengan menggunakan reaksi anaerobik,yaitu fermentasi (transpor elektron anaerobik).Sebagian dari sel kita juga menggunakan jalur anaerobik untuk periode pendek tertentu pada saat sel-sel tersebut tidak memperoleh suplai oksigen yang cukup.Namun respirasi anerobik hanya menghasilkan molekul 2 ATP saja.
Fermentasi
Dalam keadaan normal, organisme melakukan pembongkaran zat dengan cara oksidasi biologi atau respirasi aerob, yaitu respirasi yang memerlukan oksigen bebas. Akan tetapi, pada saat kadar oksigen terlalu rendah, oksidasi biologi tidak dapat berlangsung. Misalnya, pada tumbuhan darat yang tanahnya tergenang air sehingga akar tidak dapat melakukan respirasi aerob karena kadar oksigen dalam rongga tanah sangat rendah.
Pada manusia, kekurangan oksigen sering terjadi pada atlet-atlet yang berlari jarah jauh dengan kencang. Atlet tersebut membutuhkan kadar oksigen yang lebih banyak daripada yang diambil dari pernafasan. Dengan kurangnya oksigen dalam tubuh, maka proses pembongkaran zat dilakukan dengan cara anaerob, yang disebut dengan fermentasi. Fermentasi tidak harus selalu dalam keadaan anaerob. Beberapa jenis mikroorganisme mampu melakukan fermentasi dalam keadaan aerob, misalnya pada fermentasi asam cuka.
Jika dibandingkan dengan respirasi, sebenarnya fermentasi ini sangat merugikan sel karena dua alasan:
1. Sering dihasilkan senyawa yang merusak sel, misalnya alkohol.
2. Dari jumlah mol zat yang sama akan dihasilkan jumlah energi yang lebih rendah/lebih sedikit.
Fermentasi diberi nama sesuai dengan jenis senyawa akhir yang dihasilkan. Berdasarkan senyawa atau jenis zat yang dihasilkan, fermentasi dibedakan menjadi fermentasi asam laktat, fermentasi alkohol, dan fermentasi asam cuka.
Fermentasi Asam Laktat

Pada sel hewan tingkat tinggi dan manusia, jika bekerja terlalu berat dan kebutuhan oksigen untuk melakukan respirasi sel tidak cukup, maka senyawa asam piruvat dalam sel otot akan direduksi menjadi asam laktat (asam lelah). Asam laktat adalah suatu senyawa yang dapat menurunkan pH sampai pada suatu titik yang mengakibatkan gangguan serius pada fungsi sel. Salah satu gangguan yang ditimbulkannya adalah kelelahan, sehingga asam laktat sering disebut juga asam lelah.
Proses glikolisis menghasilkan asam piruvat. Jika cukup oksigen, glikolisis akan dilanjutkan dengan siklus Krebs. Bila kondisi anaerob (kurang oksigen) yang terjadi, asam piruvat akan diubah menjadi asam laktat. Akibatnya, rantai transpor elektron tidak terjadi karena tidak lagi menerima elektron dari NADH dan FADH2 yang dalam keadaan aerob dihasilkan oleh siklus Krebs. Karena tidak terjadi penyaluran elektron, maka NAD+ dan FAD yang mutlak diperlukan dalam siklus Krebs juga tidak terbentuk sehingga daur Krebs terhenti. Reaksi ini merupakan suatu pemborosan, karena hanya 7% dari energi yang terdapat pada asam piruvat yang dibebaskan. Meskipun fermentasi asam laktat menghasilkan senyawa yang merugikan otot, tetapi poses ini menghasilkan ATP bagi sel yang tidak dapat melakukan respirasi secara aerob. Pada fermentasi asam laktat ini, dari satu molekul glukosa dihasilkan ATP sebanyak 2 molekul. Secara sederhana, fermentasi asam laktat berlangsung sebagai berikut.

Mungkin Anda heran mengapa didalam fermentasi asam laktat dapat dihasilkan energi. Sebab kalau dipikir, molekul asam piruvat tidak lebih teroksidasi daripada molekul glukosa. Jika rumus molekulnya diperhatikan, C3H4O3, maka seakan-akan apa yang terjadi pada glikolisis hanyalah pemecahan molekul glukosa, (C6H12O6), menjadi dua bagian (C3H6O3), yang kemudian kehilangan 2 elektronnya dalam bentuk 2 atom hidrogen. Hal ini memang benar. Tetapi, penelitian lebih lanjut mengungkapkan bahwa apa yang terjadi bukan sekedar itu. Satu ujung dari molekul asam piruvat (–CH3) sekarang lebih tereduksi daripada yang terdapat pada glukosa, sedangkan pada ujung lainnya (–COOH) lebih teroksidasi. Reaksi reduksi dan oksidasi inilah yang kemudian membebaskan energi yang sedikit tersebut.
Fermentasi Alkohol

Beberapa organisme seperti Saccharomyces dapat hidup, baik dalam kondisi lingkungan cukup oksigen maupun kurang oksigen. Organisme yang demikian disebut aerob fakultatif. Dalam keadaan cukup oksigen, Saccharomyces akan melakukan respirasi biasa. Akan tetapi, jika dalam keadaan lingkungan kurang oksigen Saccharomyces akan melakukan fermentasi.
Dalam keadaan anaerob, asam piruvat yang dihasilkan oleh proses glikolisis akan diubah menjadi asam asetat dan CO2. Selanjutnya, asam asetat diubah menjadi alkohol. Proses perubahan asam asetat menjadi alkohol tersebut diikuti pula dengan perubahan NADH menjadi NAD+. Dengan terbentuknya NAD+, peristiwa glikolisis dapat terjadi lagi. Dalam fermentasi alkohol ini, dari satu mol glukosa hanya dapat dihasilkan 2 molekul ATP. Fermentasi alkohol, secara sederhana, berlangsung sebagai berikut.

Sebagaimana halnya fermentasi asam laktat, reaksi ini merupakan suatu pemborosan. Sebagian besar dari energi yang terkandung di dalam glukosa masih terdapat di dalam etanol, karena itu etanol sering dipakai sebagai bahan bakar mesin. Reaksi ini, seperti fermentasi asam laktat, juga berbahaya. Ragi dapat meracuni dirinya sendiri jika konsentrasi etanol mencapai 13% (Hal ini menjelaskan kadar maksimum alkohol pada minuman hasil fermentasi seperti anggur).
Fermentasi Asam Cuka
Fermentasi asam cuka merupakan satu contoh fermentasi yang berlangsung dalam keadaan aerob. Fermentasi ini biasa dilakukan oleh bakteri asam cuka (Acetobacter) dengan substrat etanol. Jika diberikan oksigen yang cukup, bakteri-bakteri ini dapat memproduksi cuka dari bermacam-macam bahan makanan yang beralkohol. Bahan makanan yang biasa digunakan yaitu sari buah apel, anggur, biji-bijian fermentasi, malt, beras, atau bubur kentang. Dari proses fermentasi asam cuka, energi yang dihasilkan lima kali lebih besar daripada energi yang dihasilkan oleh fermentasi alkohol. Secara umum reaksi kimia yang terfasilitasi oleh bakteri ini adalah:
C2H5OH + O2 —> CH3COOH + H2O
C. Katabolisme Protein
Tahap awal metabolisme asam amino melibatkan pelepasan gugus amino, kemudian baru perubahan kerangka karbon pada molekul asam amino. Dua proses utama pelepasan gugus amino, yaitu 1) transaminasi, yaitu proses katabolisme asam amino yang melibatkan gugus amino dari satu asam amino kepada asam amino lain, 2) deaminasi oksidatif yang menggunakan enzim dehidrogenase sebagai katalis (Poedjiadi, 1994: 301-302).
Pada gambar berikut terlihat bahwa kerangka karbon dari 10 asam amino menghasilkan asetil KoA, yang laangsung memasuki siklus asam sitrat. Lima dari sepuluh asam amino diuraikan menjadi asetil KoA melalui piruvat. Kelima asam amino yang masuk melalui piruvat adalah alanin, sistein, glisin, serin, dan treonin. Sedangkan lima lainnya, yaitu asam amino fenilalanin, tirosin, lisin, tritofan, dan leusin sebagian karbon asam aminonya menghasilkan asetoasetil KoA, yang lalu diubah menjadi asetil KoA. Kerangka karbon metionin, isoleusin, dan valin lambat laun terdegradasi oleh lintas yang menghasilkan suksinil KoA, senyawa antara siklus asam sitrat. Fenilalanin dan tirosin masing-masing menghasilkan dua produk dengan 4 karbon, yaitu asetoasetat dan fumarat. Asetoasetat memasuki siklus asam sitrat dalam bentuk asetil KoA. Kerangka karbon asparagin dan asam aspartat pada akhirnya memasuki siklus asam sitrat melalui oksaloasetat (Lehninger, 2005: 225, 226, 232, 233, 234).
Asam amino dihasilkan dari proses hidrolisis protein. Setelah gugus amino dari asam amino dilepas, beberapa asam amino diubah menjadi asam piruvat dan ada juga diubah menjadi asetil koenzim A. Gugus amino yang dilepas dari asam amino dibawa ke hati untuk diubah menjadi amoniak (NH3) dan dibuang lewat urine, 1 gram protein menghasilkan energi yang sama dengan 1 gram karbohirat (Anonim, 2009).
D. Katabolisme Lipid
Jika sumber energi dari karbohidrat telah mencukupi, maka asam lemak mengalami esterifikasi yaitu membentuk ester dengan gliserol menjadi trigliserida sebagai cadangan energi jangka panjang. Jika sewaktu-waktu tak tersedia sumber energi dari karbohidrat barulah asam lemak dioksidasi. Proses oksidasi asam lemak dinamakan oksidasi beta dan menghasilkan asetil KoA. Selanjutnya sebagaimana asetil KoA dari hasil metabolisme karbohidrat dan protein, asetil KoA dari jalur inipun akan masuk ke dalam siklus asam sitrat sehingga dihasilkan energi (Nugroho, 2009). Lebih lanjut Nugroho menguraikan proses metabolisme asam lemak sebagai berikut.
1. Katabolisme Gliserol
Gliserol sebagai hasil hidrolisis lipid (trigliserida) dapat menjadi sumber energi. Gliserol ini selanjutnya masuk ke dalam jalur metabolisme karbohidrat yaitu glikolisis. Pada tahap awal, gliserol mendapatkan 1 gugus fosfat dari ATP membentuk gliserol 3-fosfat. Selanjutnya senyawa ini masuk ke dalam rantai respirasi membentuk dihidroksi aseton fosfat, suatu produk antara dalam jalur glikolisis.
2. Oksidasi Asam Lemak (Oksidasi Beta)
Sebelum dikatabolisir dalam oksidasi beta, asam lemak harus diaktifkan terlebih dahulu menjadi asil-KoA. Dengan adanya ATP dan Koenzim A, asam lemak diaktifkan dengan dikatalisir oleh enzim asil-KoA sintetase (Tiokinase).
Asam lemak bebas pada umumnya berupa asam-asam lemak rantai panjang. Asam lemak rantai panjang ini akan dapat masuk ke dalam mitokondria dengan bantuan senyawa karnitin. Langkah-langkah masuknya asil KoA ke dalam mitokondria dijelaskan sebagai berikut.
a. Asam lemak bebas (FFA) diaktifkan menjadi asil-KoA dengan dikatalisir oleh enzim tiokinase.
b. Setelah menjadi bentuk aktif, asil-KoA dikonversikan oleh enzim karnitin palmitoil transferase I yang terdapat pada membran eksterna mitokondria menjadi asil karnitin. Setelah menjadi asil karnitin, barulah senyawa tersebut bisa menembus membran interna mitokondria.
c. Pada membran interna mitokondria terdapat enzim karnitin asil karnitin translokase yang bertindak sebagai pengangkut asil karnitin ke dalam dan karnitin keluar.
d. Asil karnitin yang masuk ke dalam mitokondria selanjutnya bereaksi dengan KoA dengan dikatalisir oleh enzim karnitin palmitoiltransferase II yang ada di membran interna mitokondria menjadi Asil Koa dan karnitin dibebaskan.
e. Asil KoA yang sudah berada dalam mitokondria ini selanjutnya masuk dalam proses oksidasi beta.
Pada proses oksidasi beta, asam lemak masuk ke dalam rangkaian siklus dengan 5 tahapan proses dan pada setiap proses, diangkat 2 atom C dengan hasil akhir berupa asetil KoA. Selanjutnya asetil KoA masuk ke dalam siklus asam sitrat. Menurut Poedjiadi (1994: 279-280), tahapan-tahapan tersebut adalah sebagai berikut.
a. Pembentukan asil KoA dari asam lemak berlangsung dengan katalis enzim asil KoA sintetase yang disebut juga tiokinase.
b. Reaksi kedua adalah reaksi pembentukan enoil KoA dengan cara oksidasi. Enzim asil KoA dehidrogenase berperan sebagai katalis dalam reaksi ini. Koenzim yang dibutuhkan dalam reaksi ini adalah FAD yang berperan sebagai akseptor hydrogen. Dua molekul ATP dibentuk untuk tiap pasang electron yang ditransportasikan dari molekul FADH2 melalui sistem transport electron.
c. Pada reaksi ketiga, enzim enoil KoA hidratase merupakan katalis yang menghasilkan L-hidroksiasil KoA. Reaksi ini ialah reaksi hidrasi terhadap ikatan rangkap anatar C-2 dan C-3.
d. Reaksi keempat adalah reaksi oksidasi yang mengubah hidroksiasil koenzim A menjadi ketoasil koenzim A. Enzim L-hidrokdiasil koenzim A dehidrogenase melibatkan NAD yang direduksi menjadi NADH.
e. Tahap kelima adalah reaksi pemecahan ikatan C-C, sehingga menghasilkan aseil koenzim A dan asil koenzim A yang mempunyai jumlah atom C dua buah lebih pendek dari molekul semula.
Asil KoA yang terbentuk pada reaksi tahap 5, mengalami metabolisme lebih lanjut melalui reaksi tahap 2 hingga tahap 5 dan demikian seterusnya sampai rantai C pada asam lemak terpecah menjadi molekul-molekul asetil KoA. Selanjutnya asetil KoA dapat teroksidasi menjadi CO2 dan H2O melalui siklus asam sitrat (Poedjiadi, 1994: 282). Asetil KoA yang dihasilkan dari oksidasi asam lemak tidak berbeda dengan asetil KoA yang dibentuk dari piruvat (Lehninger, 2005: 204). Tahapan-tahapan dalam oksidasi asam lemak ini dapat dilihat pada gambar 27 berikut ini.
Anabolisme Karbohidrat
Anabolisme adalah proses pembentukan molekul kompleks dari molekul sederhana yang memerlukan energi. Contoh: fotosintesis dan kemosintesis.
Fotosintesis
Fotosintesis merupakan proses pembentukan bahan organik dari zat anorganik dengan bantuan energi cahaya.
Reaksi:
energi cahaya
6CO2 + 6H2O —————-> C6H12O6 + 6O2
klorofil
Fotosintesis terdiri dari dua tahap, yaitu reaksi gelap dan reaksi terang.
a. Reaksi Terang
Reaksi terang berlangsung di dalam grana dan memerlukan cahaya. Cahaya matahari berfungsi mengaktifkan klorofil dan melepaskan elektron sehingga terjadi fotolisis. Fotolisis adalah penguraian air menjadi hidrogen dan oksigen.
energi cahaya
Klorofil —————> klorofil
e- │
V
H2O –> O2 + 2H-
Satu atom oksigen yang dihasilkan segera bergabung dengan atom oksigen yang lain membentuk senyawa O2. Adapun H2 yang ditangkap NADP sebagai akseptor hidrogen sehingga menjadi NADPH2. Selama proses ini menghasilkan ATP.
b. Reaksi Gelap
Reaksi gelap berlangsung di stroma tanpa bantuan energi cahaya. Reaksi ini menurunkan energi berupa ATP dan NADPH yang berasal dari reaksi terang untuk fiksasi CO2. Pada saat ini terjadi pengikatan CO2 di udara oleh RuBP (ribulosa biphosphat) menjadi PGA (asam 3-fosfogliserat) yang akan berikatan dengan ion H+ (dari reaksi terang) menjadi PGAL (phosphor gliseral dehide). Melalui reaksi yang diselenggarakan oleh enzim, PGAL dibentuk menjadi glukosa atau amilum.
Kemosintesis
Kemosintesis merupakan proses pembentukan bahan organik dari zat anorganik dengan menggunakan energi dari bahan-bahan kimia.
Contohnya adalah sebagai berikut.
a. Bakteri Nitrosomonas dan Nitrosococcus mendapatkan energi dengan mengoksidasi NH3 dalam bentuk (NH4)2 CO3 menjadi asam nitrit.
Reaksi:
Nitrosomonas
(NH4)2CO3 + 3O2 —————> 2HNO2 + CO2 + 3H2O + energi
Nitrosococcus
b. Nitrobacter mengubah nitrit menjadi nitrat.
Reaksinya:
Ca(NO2)2 + O2 -> Ca(NO3)2 + energi
kalsium nitrit kalsium nitrat
Reaksi Terang
Tahap pertama dari sistem fotosintesis adalah reaksi terang, yang sangat bergantung kepada ketersediaan sinar matahari. Reaksi terang merupakan penggerak bagi reaksi pengikatan CO2 dari udara. Reaksi ini melibatkan beberapa kompleks protein dari membran tilakoid yang terdiri dari sistem cahaya (fotosistem I dan II), sistem pembawa elektron, dan komplek protein pembentuk ATP (enzim ATP sintase). Reaksi terang mengubah energi cahaya menjadi energi kimia, juga menghasilkan oksigen dan mengubah ADP dan NADP+ menjadi energi pembawa ATP dan NADPH.
Reaksi terang terjadi di tilakoid, yaitu struktur cakram yang terbentuk dari pelipatan membran dalam kloroplas. Membran tilakoid menangkap energi cahaya dan mengubahnya menjadi energi kimia. Jika ada bertumpuk-tumpuk tilakoid, maka disebut grana.
Secara ringkas, reaksi terang pada fotosintesis ini terbagi menjadi dua, yaitu fosforilasi siklik dan fosforilasi nonsiklik. Fosforilasi adalah reaksi penambahan gugus fosfat kepada senyawa organik untuk membentuk senyawa fosfat organik. Pada reaksi terang, karena dibantu oleh cahaya, fosforilasi ini disebut juga fotofosforilasi.
Fotofosforilasi Siklik
Reaksi fotofosforilasi siklik adalah reaksi yang hanya melibatkan satu fotosistem, yaitu fotosistem I. Dalam fotofosforilasi siklik, pergerakan elektron dimulai dari fotosistem I dan berakhir di fotosistem I.
Pertama, energi cahaya, yang dihasilkan oleh matahari, membuat elektron-elektron di P700 tereksitasi (menjadi aktif karena rangsangan dari luar), dan keluar menuju akseptor elektron primer kemudian menuju rantai transpor elektron. Karena P700 mentransfer elektronnya ke akseptor elektron, P700 mengalami defisiensi elektron dan tidak dapat melaksanakan fungsinya. Selama perpindahan elektron dari akseptor satu ke akseptor lain, selalu terjadi transformasi hidrogen bersama-sama elektron. Rantai transpor ini menghasilkan gaya penggerak proton, yang memompa ion H+ melewati membran, yang kemudian menghasilkan gradien konsentrasi yang dapat digunakan untuk menggerakkan sintase ATP selama kemiosmosis, yang kemudian menghasilkan ATP. Dari rantai transpor, elektron kembali ke fotosistem I. Dengan kembalinya elektron ke fotosistem I, maka fotosistem I dapat kembali melaksanakan fungsinya. Fotofosforilasi siklik terjadi pada beberapa bakteri, dan juga terjadi pada semua organisme fotoautotrof.

Fotofosforilasi Nonsiklik
Reaksi fotofosforilasi nonsiklik adalah reaksi dua tahap yang melibatkan dua fotosistem klorofil yang berbeda, yaitu fotosistem I dan II. Dalam fotofosforilasi nonsiklik, pergerakan elektron dimulai di fotosistem II, tetapi elektron tidak kembali lagi ke fotosistem II.
Mula-mula, molekul air diurai menjadi 2H+ + 1/2O2 + 2e-. Dua elektron dari molekul air tersimpan di fotosistem II, sementara ion H+ akan digunakan pada reaksi yang lain dan O2 akan dilepaskan ke udara bebas. Karena tersinari oleh cahaya matahari, dua elektron yang ada di P680 menjadi tereksitasi dan keluar menuju akseptor elektron primer. Setelah terjadi transfer elektron, P680 menjadi defisiensi elektron, tetapi dapat cepat dipulihkan berkat elektron dari hasil penguraian air tadi. Setelah itu mereka bergerak lagi ke rantai transpor elektron, yang membawa mereka melewati pheophytin, plastoquinon, komplek sitokrom b6f, plastosianin, dan akhirnya sampai di fotosistem I, tepatnya di P700. Perjalanan elektron diatas disebut juga dengan “skema Z”. Sepanjang perjalanan di rantai transpor, dua elektron tersebut mengeluarkan energi untuk reaksi sintesis kemiosmotik ATP, yang kemudian menghasilkan ATP.
Sesampainya di fotosistem I, dua elektron tersebut mendapat pasokan tenaga yang cukup besar dari cahaya matahari. Kemudian elektron itu bergerak ke molekul akseptor, feredoksin, dan akhirnya sampai di ujung rantai transpor, dimana dua elektron tersebut telah ditunggu oleh NADP+ dan H+, yang berasal dari penguraian air. Dengan bantuan suatu enzim bernama Feredoksin-NADP reduktase, disingkat FNR, NADP+, H+, dan elektron tersebut menjalani suatu reaksi:
>> NADP+ + H+ + 2e- —> NADPH
NADPH, sebagai hasil reaksi diatas, akan digunakan dalam reaksi Calvin-Benson, atau reaksi gelap.

Fotofosforilasi siklik dan fotofosforilasi nonsiklik memiliki perbedaan yang mendasar, yaitu sebagai berikut
FOTOFOSFORILASI SIKLIK FOTOFOSFORILASI NONSIKLIK
Hanya melibatkan fotosistem I Melibatkan fotosistem I dan II
Menghasilkan ATP Menghasilkan ATP dan NADPH
Tidak terjadi fotolisis air Terjadi fotolisis air untuk menutupi kekurangan elektron pada fotosistem II
Reaksi Gelap
Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis. Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplas yang disebut stroma. Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang, dan CO2, yang berasal dari udara bebas. Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme. Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.
Salah satu substansi penting dalam proses ini ialah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat. Jika diberikan gugus fosfat kedua dari ATP maka dihasilkan ribulosa difosfat (RDP). Ribulosa difosfat ini yang nantinya akan mengikat CO2 dalam reaksi gelap. Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi.
Pada fase fiksasi, 6 molekul ribulosa difosfat mengikat 6 molekul CO2 dari udara dan membentuk 6 molekul beratom C6 yang tidak stabil yang kemudian pecah menjadi 12 molekul beratom C3 yang dikenal dengan 3-asam fosfogliserat (APG/PGA). Selanjutnya, 3-asam fosfogliserat ini mendapat tambahan 12 gugus fosfat, dan membentuk 1,3-bifosfogliserat. Kemudian, 1,3-bifosfogliserat masuk ke dalam fase reduksi, dimana senyawa ini direduksi oleh H+ dari NADPH, yang kemudian berubah menjadi NADP+, dan terbentuklah 12 molekul fosfogliseraldehid (PGAL) yang beratom 3C. Selanjutnya, 2 molekul fosfogliseraldehid melepaskan diri dan menyatukan diri menjadi 1 molekul glukosa yang beratom 6C (C6H12O6). 10 molekul fosfogliseraldehid yang tersisa kemudian masuk ke dalam fase regenerasi, yaitu pembentukan kembali ribulosa difosfat. Pada fase ini, 10 molekul fosfogliseraldehid berubah menjadi 6 molekul ribulosa fosfat. Jika mendapat tambahan gugus fosfat, maka ribulosa fosfat akan berubah menjadi ribulosa difosfat (RDP), yang kemudian kembali mengikat CO2 dan menjalani siklus reaksi gelap. (Lihat Bagan)

Reaksi gelap ini menghasilkan APG (asam fosfogliserat), ALPG (fosfogliseraldehid), RDP (ribulosa difosfat), dan glukosa (C6H12O6).
Siklus Calvin dibagi menjadi tiga tahap yaitu :
  1. Fiksasi karbon.  Molekul CO2 diikat pada ribulosa bifosfat (RuBP) dengan bantuan RuBP karboksilase atau Rubisco.  Reaksi ini menghasilkan dua molekul 3-fosfogliserat.
  2. Reduksi.  Tiap molekul 3-fosfogliserat menerima gugus fosfat baru dari ATP menghasilkan 1,3-difosfogliserat. Selanjutnya 1,3 difosfogliserat direduksi oleh sepasang electron dari NADPH menjadi gliseraldehid 3-fosfat (G3P).  G3P merupakan gula.  Setiap 3 molekul CO2 terdapat 6 molekul G3P, tetapi hanya 1 molekul G3P yang dihitung sebagai selisih perolehan karbohidrat. Satu molekul keluar siklus dan digunakan oleh tumbuhan, sedangkan 5 molekul didaur ulang untuk menghasilkan 3 molekul RuBP.
  3. Regenerasi akseptor CO2.  Lima molekul G3P disusun ulang dalam langkah terakhir siklus Calvin menjadi 3 molekul RuBP yang siap menerima CO2 kembali.
Tumbuhan C4
Tumbuhan C4 memfiksasi karbon dengan membentuk senyawa berkarbon empat sebagai produknya.  Tergolong tumbuhan C4 yang penting dalam pertanian adalah tebu, jagung, dan famili rumput.  Dalam tumbuhan C4 terdapat dua jenis sel fotosintetik : sel seludang-berkas pembuluh dan sel mesofil.  Sel seludang berkas pembuluh tersusun menjadi kemasan yang padat di sekitar berkas pembuluh. Di antara seludang-berkas pembuluh dan epidermis daun terdapat sel mesofil.  Siklus Calvin terbatas pada kloroplas seludang-berkas pembuluh.  Siklus ini didahului oleh masuknya CO2 ke dalam senyawa organik dalam mesofil.
Tahap pertama adalah penambahan CO2 pada fosfoenolpiruvat (PEP) untuk membentuk oksaloasetat (memiliki empar karbon).  Enzim karboksilase menambahkan CO2 pada PEP.   Setelah memfiksasi CO2, sel mesofil mengirim keluar produk berkarbon empat ke sel seludang-berkas pembuluh melalui plasmodesmata.  Dalam seludang-berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang ke dalam materi organik oleh rubisko dan siklus Calvin.
Sel mesofil tumbuhan C4 memompa CO2 ke dalam seludang-berkas pembuluh, mempertahankan konsentrasi CO2 dalam seludang-berkas pembuluh cukup tinggi agar rubisko dapat menerima CO2 bukan O2.  Fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula.
Tumbuhan CAM
Tumbuhan lain seperti tumbuhan sukulen (penyimpan air), kaktus, nenas dan beberapa family lain memiliki adaptasi fotosintesis yang lain.  Tumbuhan ini membuka stomata pada malam hari dan menutup pada siang hari. Stomata yang menutup pada siang hari membuat tumbuhan menghemat air tetapi mencegah masuknya CO2.  Saat stomata terbuka pada malam hari, tumbuhan mengambil CO2 dan memasukkannya ke berbagai asam organic.  Metabolism ini disebut crassulacean acid metabolism (CAM).  Sel mesofil tumbuhan CAM menyimpan asam organic yang dibuatnya selama malam hari di dalam vakuola hingga pagi hari.  Pada siang hari saat reaksi terang menyediakan ATP dan NADPH untuk siklus Calvin, CO2 dilepas dari asam organik yang dibuat pada malam hari itu  sebelum dimasukkan ke dalam gula dalam kloroplas.

Tidak ada komentar: